Copyright © 2014-2019

Onubaelectrónica.es

.

Todos los derechos Reservados. -

Información Legal

.

Intel 4004

Intel 8008

Intel 8080

Intel 8086

Intel 80286

Intel 80386

Intel 80486

Intel Pentium

IBM Power PC 620

Intel Pentium PRO

AMD K5

AMD K6-II

Intel Pentium III

Intel Pentium II

Intel Pentium 4

AMD Atlon XP

AMD Athlon 64

Intel Core Duo

AMD Phenom II

Intel Core I7 Nehalem

AMD Phenom II

Intel CORE Sandy Bridge

AMD Fusión

Intel Core Ivy Bridge

Intel Core Haswell

AMD Ryzen 7

El Procesador

La evolución del Procesador

OnubaElectrónica

Aprendes fácilmente!

Síguenos

El microprocesador surgió de la evolución de distintas tecnologías predecesoras, básicamente de la computación y de la tecnología de semiconductores. El inicio de esta última data de mitad de la década de 1950; estas tecnologías se fusionaron a principios de los años 1970, produciendo el primer microprocesador. Dichas tecnologías iniciaron su desarrollo a partir de la segunda guerra mundial; en este tiempo los científicos desarrollaron computadoras específicas para aplicaciones militares. En la posguerra, a mediados de la década de 1940, la computación digital emprendió un fuerte crecimiento también para propósitos científicos y civiles. La tecnología electrónica avanzó y los científicos hicieron grandes progresos en el diseño de componentes de estado sólido (semiconductores). En 1948 en los laboratorios Bell crearon el transistor. En los años 1950, aparecieron las primeras computadoras digitales de propósito general. Se fabricaron utilizando tubos al vacío o bulbos como componentes electrónicos activos. Módulos de tubos al vacío componían circuitos lógicos básicos, tales como compuertas y flip-flops. Ensamblándolos en módulos se construyó la computadora electrónica (la lógica de control, circuitos de memoria, etc.). Los tubos de vacío también formaron parte de la construcción de máquinas para la comunicación con las computadoras. Para la construcción de un circuito sumador simple se requiere de algunas compuertas lógicas. La construcción de una computadora digital precisa numerosos circuitos o dispositivos electrónicos. Un paso trascendental en el diseño de la computadora fue hacer que el dato fuera almacenado en memoria. Y la idea de almacenar programas en memoria para luego ejecutarlo fue también de fundamental importancia (Arquitectura de von Neumann). La tecnología de los circuitos de estado sólido evolucionó en la década de 1950. El empleo del silicio (Si), de bajo costo y con métodos de producción masiva, hicieron del transistor el componente más usado para el diseño de circuitos electrónicos. Por lo tanto el diseño de la computadora digital se reemplazó del tubo al vacío por el transistor, a finales de la década de 1950. A principios de la década de 1960, el estado de arte en la construcción de computadoras de estado sólido sufrió un notable avance; surgieron las tecnologías en circuitos digitales como: RTL (Lógica Transistor Resistor), DTL (Lógica Transistor Diodo), TTL (Lógica Transistor Transistor), ECL (Lógica Complementada Emisor). A mediados de los años 1960 se producen las familias de circuitos de lógica digital, dispositivos integrados en escala SSI y MSI que corresponden a baja y mediana escala de integración de componentes. A finales de los años 1960 y principios de los 70 surgieron los sistemas a alta escala de integración o LSI. La tecnología LSI fue haciendo posible incrementar la cantidad de componentes en los circuitos integrados. Sin embargo, pocos circuitos LSI fueron producidos, los dispositivos de memoria eran un buen ejemplo. Las primeras calculadoras electrónicas requerían entre 75 y 100 circuitos integrados. Después se dio un paso importante en la reducción de la arquitectura de la computadora a un circuito integrado simple, resultando uno que fue llamado microprocesador, unión de las palabras «Micro» del griego μικρο-, «pequeño», y procesador. Sin embargo, es totalmente válido usar el término genérico procesador, dado que con el paso de los años, la escala de integración se ha visto reducida de micro métrica a nanométrica; y además, es sin duda, un procesador. * El primer microprocesador fue el Intel 4004,1​ producido en 1971. Se desarrolló originalmente para una calculadora y resultó revolucionario para su época. Contenía 2300 transistores, era un microprocesador de arquitectura de 4 bits que podía realizar hasta 60000 operaciones por segundo trabajando a una frecuencia de reloj de alrededor de 700 kHz. * El primer microprocesador de 8 bits fue el Intel 8008, desarrollado a mediados de 1972 para su uso en terminales informáticos. El Intel 8008 integraba 3300 transistores y podía procesar a frecuencias máximas de 800kHz. * El primer microprocesador realmente diseñado para uso general, desarrollado en 1974, fue el Intel 8080 de 8 bits, que contenía 4500 transistores y podía ejecutar 200 000 instrucciones por segundo trabajando a alrededor de 2MHz. * El primer microprocesador de 16 bits fue el 8086, seguido del 8088. El 8086 fue el inicio y el primer miembro de la popular arquitectura x86, actualmente usada en la mayoría de los computadores. El chip 8086 fue introducido al mercado en el verano de 1978, pero debido a que no había aplicaciones en el mercado que funcionaran con 16 bits, Intel sacó al mercado el 8088, que fue lanzado en 1979. Llegaron a operar a frecuencias mayores de 4MHz. * El microprocesador elegido para equipar al IBM Personal Computer/AT, que causó que fuera el más empleado en los PC-AT compatibles entre mediados y finales de los años 1980 fue el Intel 80286 (también conocido simplemente como 286); es un microprocesador de 16 bits, de la familia x86, que fue lanzado al mercado en 1982. Contaba con 134 000 transistores. Las versiones finales alcanzaron velocidades de hasta 25MHz. * Uno de los primeros procesadores de arquitectura de 32 bits fue el 80386 de Intel, fabricado a mediados y fines de la década de 1980; en sus diferentes versiones llegó a trabajar a frecuencias del orden de los 40MHz. La generación 486 realmente significó contar con una computadora personal de prestaciones avanzadas, entre ellas, un conjunto de instrucciones optimizado, una unidad de coma flotante o FPU, una unidad de interfaz de bus mejorada y una memoria caché unificada, todo ello integrado en el propio chip del microprocesador. Estas mejoras hicieron que los i486 fueran el doble de rápidos que el par i386 - i387 operando a la misma frecuencia de reloj. El procesador Intel 486 fue el primero en ofrecer un coprocesador matemático o FPU integrado; con él que se aceleraron notablemente las operaciones de cálculo. Usando una unidad FPU las operaciones matemáticas más complejas son realizadas por el coprocesador de manera prácticamente independiente a la función del procesador principal. El microprocesador de Pentium poseía una arquitectura capaz de ejecutar dos operaciones a la vez, gracias a sus dos tuberías de datos de 32 bits cada uno, uno equivalente al 486DX(u) y el otro equivalente a 486SX(u). Además, estaba dotado de un bus de datos de 64 bits, y permitía un acceso a memoria de 64 bits (aunque el procesador seguía manteniendo compatibilidad de 32 bits para las operaciones internas, y los registros también eran de 32 bits). Las versiones que incluían instrucciones MMX no sólo brindaban al usuario un más eficiente manejo de aplicaciones multimedia, sino que también se ofrecían en velocidades de hasta 233MHz. Se incluyó una versión de 200MHz y la más básica trabajaba a alrededor de 166MHz de frecuencia de reloj. El nombre Pentium, se mencionó en las historietas y en charlas de la televisión a diario, en realidad se volvió una palabra muy popular poco después de su introducción. En este año IBM y Motorola desarrollan el primer prototipo del procesador Power PC de 64 bit,3​ la implementación más avanzada de la arquitectura Power PC, que estuvo disponible al año próximo. El 620 fue diseñado para su utilización en servidores, y especialmente optimizado para usarlo en configuraciones de cuatro y hasta ocho procesadores en servidores de aplicaciones de base de datos y vídeo. Este procesador incorpora siete millones de transistores y corre a 133MHz. Es ofrecido como un puente de migración para aquellos usuarios que quieren utilizar aplicaciones de 64 bits, sin tener que renunciar a ejecutar aplicaciones de 32 bits. Lanzado al mercado en otoño de 1995, el procesador Pentium Pro (profesional) se diseñó con una arquitectura de 32 bits. Se usó en servidores y los programas y aplicaciones para estaciones de trabajo (de redes) impulsaron rápidamente su integración en las computadoras. El rendimiento del código de 32 bits era excelente, pero el Pentium Pro a menudo era más lento que un Pentium cuando ejecutaba código o sistemas operativos de 16 bits. El procesador Pentium Pro estaba compuesto por alrededor de 5'5 millones de transistores. Habiendo abandonado los clones, AMD fabricada con tecnologías análogas a Intel. AMD sacó al mercado su primer procesador propio, el K5, rival del Pentium. La arquitectura RISC86 del AMD K5 era más semejante a la arquitectura del Intel Pentium Pro que a la del Pentium. El K5 es internamente un procesador RISC con una Unidad x86- decodificadora, transforma todos los comandos x86 (de la aplicación en curso) en comandos RISC. Este principio se usa hasta hoy en todas las CPU x86. En la mayoría de los aspectos era superior el K5 al Pentium, incluso de inferior precio, sin embargo AMD tenía poca experiencia en el desarrollo de microprocesadores y los diferentes hitos de producción marcados se fueron superando con poco éxito, se retrasó 1 año de su salida al mercado, a razón de ello sus frecuencias de trabajo eran inferiores a las de la competencia, y por tanto, los fabricantes de PC dieron por sentado que era inferior. Con el K6, AMD no sólo consiguió hacerle seriamente la competencia a los Pentium MMX de Intel, sino que además amargó lo que de otra forma hubiese sido un plácido dominio del mercado, ofreciendo un procesador casi a la altura del Pentium II pero por un precio muy inferior. En cálculos en coma flotante, el K6 también quedó por debajo del Pentium II, pero por encima del Pentium MMX y del Pro. El K6 contó con una gama que va desde los 166 hasta los más de 500MHz y con el juego de instrucciones MMX, que ya se han convertido en estándares. Más adelante se lanzó una mejora de los K6, los K6-2 de 250 nanómetros, para seguir compitiendo con los Pentium II, siendo este último superior en tareas de coma flotante, pero inferior en tareas de uso general. Se introduce un juego de instrucciones SIMD denominado 3DNow!. El Intel Pentium II es un procesador de 7'5 millones de transistores, se busca entre los cambios fundamentales con respecto a su predecesor, mejorar el rendimiento en la ejecución de código de 16 bits, añadir el conjunto de instrucciones MMX y eliminar la memoria caché de segundo nivel del núcleo del procesador, colocándola en una tarjeta de circuito impreso junto a éste. Gracias al nuevo diseño de este procesador, los usuarios de PC pueden capturar, revisar y compartir fotografías digitales con amigos y familia vía Internet; revisar y agregar texto, música y otros; con una línea telefónica; el enviar vídeo a través de las líneas normales del teléfono mediante Internet se convierte en algo cotidiano. El procesador Pentium III ofrece 70 nuevas instrucciones Internet Streaming, las extensiones de SIMD que refuerzan dramáticamente el rendimiento con imágenes avanzadas, 3D, añadiendo una mejor calidad de audio, vídeo y rendimiento en aplicaciones de reconocimiento de voz. Fue diseñado para reforzar el área del rendimiento en el Internet, le permite a los usuarios hacer cosas, tales como, navegar a través de páginas pesadas (con muchos gráficos), tiendas virtuales y transmitir archivos vídeo de alta calidad. El procesador se integra con 9,5 millones de transistores, y se introdujo usando en él tecnología 250 nanómetros. Creado en el año 2000, este microprocesador de séptima generación basado en la arquitectura x86 y fabricado por Intel, es el primero con un diseño completamente nuevo desde el Pentium Pro. Se estrenó con la arquitectura NetBurst, la cual no daba mejoras considerables respecto a la anterior P6. Intel sacrificó el rendimiento de cada ciclo para obtener a cambio mayor cantidad de ciclos por segundo y una mejora en las instrucciones SSE. El AMD Athlon XP, cuando Intel sacó el Pentium 4 a 1,7 GHz en abril de 2001 se vio que el Athlon Thunderbird no estaba a su nivel. Además no era práctico para el overclocking, entonces para seguir estando a la cabeza en cuanto a rendimiento de los procesadores x86, AMD tuvo que diseñar un nuevo núcleo, y sacó el Athlon XP. Este compatibilizaba las instrucciones SSE y las 3DNow! Entre las mejoras respecto al Thunderbird se puede mencionar la prerrecuperación de datos por hardware, conocida en inglés como prefetch, y el aumento de las entradas TLB, de 24 a 32. El AMD Athlon 64 es un microprocesador x86 de octava generación que implementa el conjunto de instrucciones AMD64, que fueron introducidas con el procesador Opteron. El Athlon 64 presenta un controlador de memoria en el propio circuito integrado del microprocesador y otras mejoras de arquitectura que le dan un mejor rendimiento que los anteriores Athlon y que el Athlon XP funcionando a la misma velocidad, incluso ejecutando código heredado de 32 bits. El Athlon 64 también presenta una tecnología de reducción de la velocidad del procesador llamada Cool'n'Quiet,: cuando el usuario está ejecutando aplicaciones que requieren poco uso del procesador, baja la velocidad del mismo y su tensión se reduce. Intel lanzó el Core Duo, esta gama de procesadores de doble núcleo y CPUs 2x2 MCM (módulo Multi-Chip) de cuatro núcleos con el conjunto de instrucciones x86-64, basado en la nueva arquitectura Core de Intel. La microarquitectura Core regresó a velocidades de CPU bajas y mejoró el uso del procesador de ambos ciclos de velocidad y energía comparados con anteriores NetBurst de los CPU Pentium 4/D2. La microarquitectura Core provee etapas de decodificación, unidades de ejecución, caché y buses más eficientes, reduciendo el consumo de energía de CPU Core 2, mientras se incrementa la capacidad de procesamiento. Los CPU de Intel han variado muy bruscamente en consumo de energía de acuerdo a velocidad de procesador, arquitectura y procesos de semiconductor, mostrado en las tablas de disipación de energía del CPU. Esta gama de procesadores fueron fabricados de 65 a 45 nanómetros. Phenom fue el nombre dado por Advanced Micro Devices (AMD) a la primera generación de procesadores de tres y cuatro núcleos basados en la microarquitectura K10. Como característica común todos los Phenom tienen tecnología de 65nm lograda a través de tecnología de fabricación Silicon on insulator (SOI). No obstante, Intel, ya se encontraba fabricando mediante la más avanzada tecnología de proceso de 45nm en 2008. Los procesadores Phenom están diseñados para facilitar el uso inteligente de energía y recursos del sistema, listos para la virtualización, generando un óptimo rendimiento por vatio. Todas las CPU Phenom poseen características tales como controlador de memoria DDR2 integrado, tecnología HyperTransport y unidades de coma flotante de 128 bits, para incrementar la velocidad y el rendimiento de los cálculos de coma flotante. La arquitectura Direct Connect asegura que los cuatro núcleos tengan un óptimo acceso al controlador integrado de memoria, logrando un ancho de banda de 16Gb/s para intercomunicación de los núcleos del microprocesador y la tecnología HyperTransport, de manera que las escalas de rendimiento mejoren con el número de núcleos. Tiene caché L3 compartida para un acceso más rápido a los datos (y así no depende tanto del tiempo de latencia de la RAM), además de compatibilidad de infraestructura de los zócalos AM2, AM2+ y AM3 para permitir un camino de actualización sin sobresaltos. A pesar de todo, no llegaron a igualar el rendimiento de la serie Core 2 Duo. Intel Core i7 es una familia de procesadores de cuatro núcleos de la arquitectura Intel x86-64. Los Core i7 son los primeros procesadores que usan la microarquitectura Nehalem de Intel y es el sucesor de la familia Intel Core 2. FSB es reemplazado por la interfaz QuickPath en i7 e i5 (zócalo 1366), y sustituido a su vez en i7, i5 e i3 (zócalo 1156) por el DMI eliminado el northBrige e implementando puertos PCI Express directamente. Memoria de tres canales (ancho de datos de 192 bits): cada canal puede soportar una o dos memorias DIMM DDR3. Las placa base compatibles con Core i7 tienen cuatro (3+1) o seis ranuras DIMM en lugar de dos o cuatro, y las DIMMs deben ser instaladas en grupos de tres, no dos. El Hyperthreading fue reimplementado creando núcleos lógicos. Está fabricado a arquitecturas de 45nm y 32nm y posee 731 millones de transistores su versión más potente. Se volvió a usar frecuencias altas, aunque a contrapartida los consumos se dispararon. AMD Phenom II es el nombre dado por AMD a una familia de microprocesadores o CPUs multinúcleo (multicore) fabricados en 45nm, la cual sucede al Phenom original y dieron soporte a DDR3. Una de las ventajas del paso de los 65nm a los 45nm, es que permitió aumentar la cantidad de caché L3. De hecho, ésta se incrementó de una manera generosa, pasando de los 2MiB del Phenom original a 6MiB. Entre ellos, el AMD Phenom II X2 BE 555 de doble núcleo surge como el procesador binúcleo del mercado. También se lanzan tres Athlon II con sólo Caché L2, pero con buena relación precio/rendimiento. El AMD Athlon II X4 630 corre a 2,8GHz. El AMD Athlon II X4 635 continua la misma línea. AMD también lanza un triple núcleo, llamado Athlon II X3 440, así como un doble núcleo Athlon II X2 255. También sale el Phenom X4 995, de cuatro núcleos, que corre a más de 3,2GHz. También AMD lanza la familia Thurban con 6 núcleos físicos dentro del encapsulado. El Intel Core Sandy Bridge Llegan para remplazar los chips Nehalem, con Intel Core i3, Intel Core i5 e Intel Core i7 serie 2000 y Pentium G. Intel lanzó sus procesadores que se conocen con el nombre en clave Sandy Bridge. Estos procesadores Intel Core que no tienen sustanciales cambios en arquitectura respecto a Nehalem, pero si los necesarios para hacerlos más eficientes y rápidos que los modelos anteriores. Es la segunda generación de los Intel Core con nuevas instrucciones de 256 bits, duplicando el rendimiento, mejorando el rendimiento en 3D y todo lo que se relacione con operación en multimedia. Llegaron la primera semana de enero del 2011. Incluye nuevo conjunto de instrucciones denominado AVX y una GPU integrada de hasta 12 unidades de ejecución. AMD Fusión es el nombre clave para un diseño futuro de microprocesadores Turion, producto de la fusión entre AMD y ATI, combinando con la ejecución general del procesador, el proceso de la geometría 3D y otras funciones de GPUs actuales. La GPU (procesador gráfico) estará integrada en el propio microprocesador. Se espera la salida progresiva de esta tecnología a lo largo del 2011; estando disponibles los primeros modelos (Ontaro y Zacate) para ordenadores de bajo consumo entre últimos meses de 2010 y primeros de 2011, dejando el legado de las gamas medias y altas (Llano, Brazos y Bulldozer para mediados o finales del 2011). Ivy Bridge es el nombre en clave de los procesadores conocidos como Intel Core de tercera generación. Son por tanto sucesores de los micros que aparecieron a principios de 2011, cuyo nombre en clave es Sandy Bridge. Pasamos de los 32 nanómetros de ancho de transistor en Sandy Bridge a los 22 de Ivy Bridge. Esto le permite meter el doble de ellos en la misma área. Un mayor número de transistores significa que puedes poner más bloques funcionales dentro del chip. Es decir, este será capaz de hacer un mayor número de tareas al mismo tiempo. Intel Core Haswell es el nombre clave de los procesadores de cuarta generación de Intel Core. Son la corrección de errores de la tercera generación e implementan nuevas tecnologías gráficas para el gamming y el diseño gráfico, funcionando con un menor consumo y teniendo un mejor rendimiento a un buen precio. Continua como su predecesor en 22nanómetros pero funciona con un nuevo Socket con clave 1150. Tienen un costo elevado a comparación con los APU's y FX de AMD pero tienen un mayor rendimiento. AMD Ryzen, es una marca de procesadores desarrollados por AMD lanzada en febrero de 2017, usa la microarquitectura Zen en proceso de fabricación de 14nm y cuentan con 4800 millones de transistores, ofrecen un gran rendimiento multi-hilo pero uno menor usando un solo hilo que los de su competencia Intel. Estos requieren del zócalo AM4 y todas las tarjetas madre para este tipo de procesadores incorporan multiplicadores desbloqueados para overclocking, además que todos los productos soportan overclocking automático, aunque esto procesadores no cuentan con GPU integrada, por lo que dependen de una solución dedicada. Los procesadores Ryzen devolvieron a AMD a la gama alta de CPUs de escritorio, capaces de competir en rendimiento contra los procesadores Core i7 de Intel con precios menores y competitivos; desde su lanzamiento la cuota de mercado de AMD ha aumentado

evolución del procesador

Intel Pentium III

Invitado
Hola

Copyright © 2014-2019 Onubaelectrónica.es.

Intel 4004

Intel 8008

Intel 8080

Intel 8086

Intel 80286

Intel 80386

Intel 80486

Intel Pentium

IBM Power PC 620

Intel Pentium PRO

AMD K5

AMD K6-II

Intel Pentium III

Intel Pentium II

Intel Pentium 4

AMD Atlon XP

AMD Athlon 64

Intel Core Duo

AMD Phenom II

Intel Core I7 Nehalem

AMD Phenom II

Intel CORE Sandy Bridge

AMD Fusión

Intel Core Ivy Bridge

Intel Core Haswell

AMD Ryzen 7

La evolución

del

Procesador

OnubaElectrónica

Aprendes fácilmente!

El microprocesador surgió de la evolución de distintas tecnologías predecesoras, básicamente de la computación y de la tecnología de semiconductores. El inicio de esta última data de mitad de la década de 1950; estas tecnologías se fusionaron a principios de los años 1970, produciendo el primer microprocesador. Dichas tecnologías iniciaron su desarrollo a partir de la segunda guerra mundial; en este tiempo los científicos desarrollaron computadoras específicas para aplicaciones militares. En la posguerra, a mediados de la década de 1940, la computación digital emprendió un fuerte crecimiento también para propósitos científicos y civiles. La tecnología electrónica avanzó y los científicos hicieron grandes progresos en el diseño de componentes de estado sólido (semiconductores). En 1948 en los laboratorios Bell crearon el transistor. En los años 1950, aparecieron las primeras computadoras digitales de propósito general. Se fabricaron utilizando tubos al vacío o bulbos como componentes electrónicos activos. Módulos de tubos al vacío componían circuitos lógicos básicos, tales como compuertas y flip-flops. Ensamblándolos en módulos se construyó la computadora electrónica (la lógica de control, circuitos de memoria, etc.). Los tubos de vacío también formaron parte de la construcción de máquinas para la comunicación con las computadoras. Para la construcción de un circuito sumador simple se requiere de algunas compuertas lógicas. La construcción de una computadora digital precisa numerosos circuitos o dispositivos electrónicos. Un paso trascendental en el diseño de la computadora fue hacer que el dato fuera almacenado en memoria. Y la idea de almacenar programas en memoria para luego ejecutarlo fue también de fundamental importancia (Arquitectura de von Neumann). La tecnología de los circuitos de estado sólido evolucionó en la década de 1950. El empleo del silicio (Si), de bajo costo y con métodos de producción masiva, hicieron del transistor el componente más usado para el diseño de circuitos electrónicos. Por lo tanto el diseño de la computadora digital se reemplazó del tubo al vacío por el transistor, a finales de la década de 1950. A principios de la década de 1960, el estado de arte en la construcción de computadoras de estado sólido sufrió un notable avance; surgieron las tecnologías en circuitos digitales como: RTL (Lógica Transistor Resistor), DTL (Lógica Transistor Diodo), TTL (Lógica Transistor Transistor), ECL (Lógica Complementada Emisor). A mediados de los años 1960 se producen las familias de circuitos de lógica digital, dispositivos integrados en escala SSI y MSI que corresponden a baja y mediana escala de integración de componentes. A finales de los años 1960 y principios de los 70 surgieron los sistemas a alta escala de integración o LSI. La tecnología LSI fue haciendo posible incrementar la cantidad de componentes en los circuitos integrados. Sin embargo, pocos circuitos LSI fueron producidos, los dispositivos de memoria eran un buen ejemplo. Las primeras calculadoras electrónicas requerían entre 75 y 100 circuitos integrados. Después se dio un paso importante en la reducción de la arquitectura de la computadora a un circuito integrado simple, resultando uno que fue llamado microprocesador, unión de las palabras «Micro» del griego μικρο-, «pequeño», y procesador. Sin embargo, es totalmente válido usar el término genérico procesador, dado que con el paso de los años, la escala de integración se ha visto reducida de micro métrica a nanométrica; y además, es sin duda, un procesador. * El primer microprocesador fue el Intel 4004,1​ producido en 1971. Se desarrolló originalmente para una calculadora y resultó revolucionario para su época. Contenía 2300 transistores, era un microprocesador de arquitectura de 4 bits que podía realizar hasta 60000 operaciones por segundo trabajando a una frecuencia de reloj de alrededor de 700 kHz. * El primer microprocesador de 8 bits fue el Intel 8008, desarrollado a mediados de 1972 para su uso en terminales informáticos. El Intel 8008 integraba 3300 transistores y podía procesar a frecuencias máximas de 800kHz. * El primer microprocesador realmente diseñado para uso general, desarrollado en 1974, fue el Intel 8080 de 8 bits, que contenía 4500 transistores y podía ejecutar 200 000 instrucciones por segundo trabajando a alrededor de 2MHz. * El primer microprocesador de 16 bits fue el 8086, seguido del 8088. El 8086 fue el inicio y el primer miembro de la popular arquitectura x86, actualmente usada en la mayoría de los computadores. El chip 8086 fue introducido al mercado en el verano de 1978, pero debido a que no había aplicaciones en el mercado que funcionaran con 16 bits, Intel sacó al mercado el 8088, que fue lanzado en 1979. Llegaron a operar a frecuencias mayores de 4MHz. * El microprocesador elegido para equipar al IBM Personal Computer/AT, que causó que fuera el más empleado en los PC- AT compatibles entre mediados y finales de los años 1980 fue el Intel 80286 (también conocido simplemente como 286); es un microprocesador de 16 bits, de la familia x86, que fue lanzado al mercado en 1982. Contaba con 134 000 transistores. Las versiones finales alcanzaron velocidades de hasta 25MHz. * Uno de los primeros procesadores de arquitectura de 32 bits fue el 80386 de Intel, fabricado a mediados y fines de la década de 1980; en sus diferentes versiones llegó a trabajar a frecuencias del orden de los 40MHz. La generación 486 realmente significó contar con una computadora personal de prestaciones avanzadas, entre ellas, un conjunto de instrucciones optimizado, una unidad de coma flotante o FPU, una unidad de interfaz de bus mejorada y una memoria caché unificada, todo ello integrado en el propio chip del microprocesador. Estas mejoras hicieron que los i486 fueran el doble de rápidos que el par i386 - i387 operando a la misma frecuencia de reloj. El procesador Intel 486 fue el primero en ofrecer un coprocesador matemático o FPU integrado; con él que se aceleraron notablemente las operaciones de cálculo. Usando una unidad FPU las operaciones matemáticas más complejas son realizadas por el coprocesador de manera prácticamente independiente a la función del procesador principal. El microprocesador de Pentium poseía una arquitectura capaz de ejecutar dos operaciones a la vez, gracias a sus dos tuberías de datos de 32 bits cada uno, uno equivalente al 486DX(u) y el otro equivalente a 486SX(u). Además, estaba dotado de un bus de datos de 64 bits, y permitía un acceso a memoria de 64 bits (aunque el procesador seguía manteniendo compatibilidad de 32 bits para las operaciones internas, y los registros también eran de 32 bits). Las versiones que incluían instrucciones MMX no sólo brindaban al usuario un más eficiente manejo de aplicaciones multimedia, sino que también se ofrecían en velocidades de hasta 233MHz. Se incluyó una versión de 200MHz y la más básica trabajaba a alrededor de 166MHz de frecuencia de reloj. El nombre Pentium, se mencionó en las historietas y en charlas de la televisión a diario, en realidad se volvió una palabra muy popular poco después de su introducción. En este año IBM y Motorola desarrollan el primer prototipo del procesador Power PC de 64 bit,3​ la implementación más avanzada de la arquitectura Power PC, que estuvo disponible al año próximo. El 620 fue diseñado para su utilización en servidores, y especialmente optimizado para usarlo en configuraciones de cuatro y hasta ocho procesadores en servidores de aplicaciones de base de datos y vídeo. Este procesador incorpora siete millones de transistores y corre a 133MHz. Es ofrecido como un puente de migración para aquellos usuarios que quieren utilizar aplicaciones de 64 bits, sin tener que renunciar a ejecutar aplicaciones de 32 bits. Lanzado al mercado en otoño de 1995, el procesador Pentium Pro (profesional) se diseñó con una arquitectura de 32 bits. Se usó en servidores y los programas y aplicaciones para estaciones de trabajo (de redes) impulsaron rápidamente su integración en las computadoras. El rendimiento del código de 32 bits era excelente, pero el Pentium Pro a menudo era más lento que un Pentium cuando ejecutaba código o sistemas operativos de 16 bits. El procesador Pentium Pro estaba compuesto por alrededor de 5'5 millones de transistores. Habiendo abandonado los clones, AMD fabricada con tecnologías análogas a Intel. AMD sacó al mercado su primer procesador propio, el K5, rival del Pentium. La arquitectura RISC86 del AMD K5 era más semejante a la arquitectura del Intel Pentium Pro que a la del Pentium. El K5 es internamente un procesador RISC con una Unidad x86- decodificadora, transforma todos los comandos x86 (de la aplicación en curso) en comandos RISC. Este principio se usa hasta hoy en todas las CPU x86. En la mayoría de los aspectos era superior el K5 al Pentium, incluso de inferior precio, sin embargo AMD tenía poca experiencia en el desarrollo de microprocesadores y los diferentes hitos de producción marcados se fueron superando con poco éxito, se retrasó 1 año de su salida al mercado, a razón de ello sus frecuencias de trabajo eran inferiores a las de la competencia, y por tanto, los fabricantes de PC dieron por sentado que era inferior. Con el K6, AMD no sólo consiguió hacerle seriamente la competencia a los Pentium MMX de Intel, sino que además amargó lo que de otra forma hubiese sido un plácido dominio del mercado, ofreciendo un procesador casi a la altura del Pentium II pero por un precio muy inferior. En cálculos en coma flotante, el K6 también quedó por debajo del Pentium II, pero por encima del Pentium MMX y del Pro. El K6 contó con una gama que va desde los 166 hasta los más de 500MHz y con el juego de instrucciones MMX, que ya se han convertido en estándares. Más adelante se lanzó una mejora de los K6, los K6-2 de 250 nanómetros, para seguir compitiendo con los Pentium II, siendo este último superior en tareas de coma flotante, pero inferior en tareas de uso general. Se introduce un juego de instrucciones SIMD denominado 3DNow!. El Intel Pentium II es un procesador de 7'5 millones de transistores, se busca entre los cambios fundamentales con respecto a su predecesor, mejorar el rendimiento en la ejecución de código de 16 bits, añadir el conjunto de instrucciones MMX y eliminar la memoria caché de segundo nivel del núcleo del procesador, colocándola en una tarjeta de circuito impreso junto a éste. Gracias al nuevo diseño de este procesador, los usuarios de PC pueden capturar, revisar y compartir fotografías digitales con amigos y familia vía Internet; revisar y agregar texto, música y otros; con una línea telefónica; el enviar vídeo a través de las líneas normales del teléfono mediante Internet se convierte en algo cotidiano. El procesador Pentium III ofrece 70 nuevas instrucciones Internet Streaming, las extensiones de SIMD que refuerzan dramáticamente el rendimiento con imágenes avanzadas, 3D, añadiendo una mejor calidad de audio, vídeo y rendimiento en aplicaciones de reconocimiento de voz. Fue diseñado para reforzar el área del rendimiento en el Internet, le permite a los usuarios hacer cosas, tales como, navegar a través de páginas pesadas (con muchos gráficos), tiendas virtuales y transmitir archivos vídeo de alta calidad. El procesador se integra con 9,5 millones de transistores, y se introdujo usando en él tecnología 250 nanómetros. Creado en el año 2000, este microprocesador de séptima generación basado en la arquitectura x86 y fabricado por Intel, es el primero con un diseño completamente nuevo desde el Pentium Pro. Se estrenó con la arquitectura NetBurst, la cual no daba mejoras considerables respecto a la anterior P6. Intel sacrificó el rendimiento de cada ciclo para obtener a cambio mayor cantidad de ciclos por segundo y una mejora en las instrucciones SSE. El AMD Athlon XP, cuando Intel sacó el Pentium 4 a 1,7 GHz en abril de 2001 se vio que el Athlon Thunderbird no estaba a su nivel. Además no era práctico para el overclocking, entonces para seguir estando a la cabeza en cuanto a rendimiento de los procesadores x86, AMD tuvo que diseñar un nuevo núcleo, y sacó el Athlon XP. Este compatibilizaba las instrucciones SSE y las 3DNow! Entre las mejoras respecto al Thunderbird se puede mencionar la prerrecuperación de datos por hardware, conocida en inglés como prefetch, y el aumento de las entradas TLB, de 24 a 32. El AMD Athlon 64 es un microprocesador x86 de octava generación que implementa el conjunto de instrucciones AMD64, que fueron introducidas con el procesador Opteron. El Athlon 64 presenta un controlador de memoria en el propio circuito integrado del microprocesador y otras mejoras de arquitectura que le dan un mejor rendimiento que los anteriores Athlon y que el Athlon XP funcionando a la misma velocidad, incluso ejecutando código heredado de 32 bits. El Athlon 64 también presenta una tecnología de reducción de la velocidad del procesador llamada Cool'n'Quiet,: cuando el usuario está ejecutando aplicaciones que requieren poco uso del procesador, baja la velocidad del mismo y su tensión se reduce. Intel lanzó el Core Duo, esta gama de procesadores de doble núcleo y CPUs 2x2 MCM (módulo Multi-Chip) de cuatro núcleos con el conjunto de instrucciones x86-64, basado en la nueva arquitectura Core de Intel. La microarquitectura Core regresó a velocidades de CPU bajas y mejoró el uso del procesador de ambos ciclos de velocidad y energía comparados con anteriores NetBurst de los CPU Pentium 4/D2. La microarquitectura Core provee etapas de decodificación, unidades de ejecución, caché y buses más eficientes, reduciendo el consumo de energía de CPU Core 2, mientras se incrementa la capacidad de procesamiento. Los CPU de Intel han variado muy bruscamente en consumo de energía de acuerdo a velocidad de procesador, arquitectura y procesos de semiconductor, mostrado en las tablas de disipación de energía del CPU. Esta gama de procesadores fueron fabricados de 65 a 45 nanómetros. Phenom fue el nombre dado por Advanced Micro Devices (AMD) a la primera generación de procesadores de tres y cuatro núcleos basados en la microarquitectura K10. Como característica común todos los Phenom tienen tecnología de 65nm lograda a través de tecnología de fabricación Silicon on insulator (SOI). No obstante, Intel, ya se encontraba fabricando mediante la más avanzada tecnología de proceso de 45nm en 2008. Los procesadores Phenom están diseñados para facilitar el uso inteligente de energía y recursos del sistema, listos para la virtualización, generando un óptimo rendimiento por vatio. Todas las CPU Phenom poseen características tales como controlador de memoria DDR2 integrado, tecnología HyperTransport y unidades de coma flotante de 128 bits, para incrementar la velocidad y el rendimiento de los cálculos de coma flotante. La arquitectura Direct Connect asegura que los cuatro núcleos tengan un óptimo acceso al controlador integrado de memoria, logrando un ancho de banda de 16Gb/s para intercomunicación de los núcleos del microprocesador y la tecnología HyperTransport, de manera que las escalas de rendimiento mejoren con el número de núcleos. Tiene caché L3 compartida para un acceso más rápido a los datos (y así no depende tanto del tiempo de latencia de la RAM), además de compatibilidad de infraestructura de los zócalos AM2, AM2+ y AM3 para permitir un camino de actualización sin sobresaltos. A pesar de todo, no llegaron a igualar el rendimiento de la serie Core 2 Duo. Intel Core i7 es una familia de procesadores de cuatro núcleos de la arquitectura Intel x86-64. Los Core i7 son los primeros procesadores que usan la microarquitectura Nehalem de Intel y es el sucesor de la familia Intel Core 2. FSB es reemplazado por la interfaz QuickPath en i7 e i5 (zócalo 1366), y sustituido a su vez en i7, i5 e i3 (zócalo 1156) por el DMI eliminado el northBrige e implementando puertos PCI Express directamente. Memoria de tres canales (ancho de datos de 192 bits): cada canal puede soportar una o dos memorias DIMM DDR3. Las placa base compatibles con Core i7 tienen cuatro (3+1) o seis ranuras DIMM en lugar de dos o cuatro, y las DIMMs deben ser instaladas en grupos de tres, no dos. El Hyperthreading fue reimplementado creando núcleos lógicos. Está fabricado a arquitecturas de 45nm y 32nm y posee 731 millones de transistores su versión más potente. Se volvió a usar frecuencias altas, aunque a contrapartida los consumos se dispararon. AMD Phenom II es el nombre dado por AMD a una familia de microprocesadores o CPUs multinúcleo (multicore) fabricados en 45nm, la cual sucede al Phenom original y dieron soporte a DDR3. Una de las ventajas del paso de los 65nm a los 45nm, es que permitió aumentar la cantidad de caché L3. De hecho, ésta se incrementó de una manera generosa, pasando de los 2MiB del Phenom original a 6MiB. Entre ellos, el AMD Phenom II X2 BE 555 de doble núcleo surge como el procesador binúcleo del mercado. También se lanzan tres Athlon II con sólo Caché L2, pero con buena relación precio/rendimiento. El AMD Athlon II X4 630 corre a 2,8GHz. El AMD Athlon II X4 635 continua la misma línea. AMD también lanza un triple núcleo, llamado Athlon II X3 440, así como un doble núcleo Athlon II X2 255. También sale el Phenom X4 995, de cuatro núcleos, que corre a más de 3,2GHz. También AMD lanza la familia Thurban con 6 núcleos físicos dentro del encapsulado. El Intel Core Sandy Bridge Llegan para remplazar los chips Nehalem, con Intel Core i3, Intel Core i5 e Intel Core i7 serie 2000 y Pentium G. Intel lanzó sus procesadores que se conocen con el nombre en clave Sandy Bridge. Estos procesadores Intel Core que no tienen sustanciales cambios en arquitectura respecto a Nehalem, pero si los necesarios para hacerlos más eficientes y rápidos que los modelos anteriores. Es la segunda generación de los Intel Core con nuevas instrucciones de 256 bits, duplicando el rendimiento, mejorando el rendimiento en 3D y todo lo que se relacione con operación en multimedia. Llegaron la primera semana de enero del 2011. Incluye nuevo conjunto de instrucciones denominado AVX y una GPU integrada de hasta 12 unidades de ejecución. AMD Fusión es el nombre clave para un diseño futuro de microprocesadores Turion, producto de la fusión entre AMD y ATI, combinando con la ejecución general del procesador, el proceso de la geometría 3D y otras funciones de GPUs actuales. La GPU (procesador gráfico) estará integrada en el propio microprocesador. Se espera la salida progresiva de esta tecnología a lo largo del 2011; estando disponibles los primeros modelos (Ontaro y Zacate) para ordenadores de bajo consumo entre últimos meses de 2010 y primeros de 2011, dejando el legado de las gamas medias y altas (Llano, Brazos y Bulldozer para mediados o finales del 2011). Ivy Bridge es el nombre en clave de los procesadores conocidos como Intel Core de tercera generación. Son por tanto sucesores de los micros que aparecieron a principios de 2011, cuyo nombre en clave es Sandy Bridge. Pasamos de los 32 nanómetros de ancho de transistor en Sandy Bridge a los 22 de Ivy Bridge. Esto le permite meter el doble de ellos en la misma área. Un mayor número de transistores significa que puedes poner más bloques funcionales dentro del chip. Es decir, este será capaz de hacer un mayor número de tareas al mismo tiempo. Intel Core Haswell es el nombre clave de los procesadores de cuarta generación de Intel Core. Son la corrección de errores de la tercera generación e implementan nuevas tecnologías gráficas para el gamming y el diseño gráfico, funcionando con un menor consumo y teniendo un mejor rendimiento a un buen precio. Continua como su predecesor en 22nanómetros pero funciona con un nuevo Socket con clave 1150. Tienen un costo elevado a comparación con los APU's y FX de AMD pero tienen un mayor rendimiento. AMD Ryzen, es una marca de procesadores desarrollados por AMD lanzada en febrero de 2017, usa la microarquitectura Zen en proceso de fabricación de 14nm y cuentan con 4800 millones de transistores, ofrecen un gran rendimiento multi- hilo pero uno menor usando un solo hilo que los de su competencia Intel. Estos requieren del zócalo AM4 y todas las tarjetas madre para este tipo de procesadores incorporan multiplicadores desbloqueados para overclocking, además que todos los productos soportan overclocking automático, aunque esto procesadores no cuentan con GPU integrada, por lo que dependen de una solución dedicada. Los procesadores Ryzen devolvieron a AMD a la gama alta de CPUs de escritorio, capaces de competir en rendimiento contra los procesadores Core i7 de Intel con precios menores y competitivos; desde su lanzamiento la cuota de mercado de AMD ha aumentado

Todos los derechos Reservados. - Información Legal.

evolución del procesador

OnubaElectrónica

Aprendes fácilmente!

Copyright © 2014-2019 Onubaelectrónica.es.

Todos los derechos Reservados. - Información Legal.

Intel 4004

Intel 8008

Intel 8080

Intel 8086

Intel 80286

Intel 80386

Intel 80486

Intel Pentium

IBM Power PC 620

Intel Pentium PRO

AMD K5

AMD K6-II

Intel Pentium III

Intel Pentium II

Intel Pentium 4

AMD Atlon XP

AMD Athlon 64

Intel Core Duo

AMD Phenom II

Intel Core I7 Nehalem

AMD Phenom II

Intel CORE Sandy Bridge

AMD Fusión

Intel Core Ivy Bridge

Intel Core Haswell

AMD Ryzen 7

La evolución

del

Procesador

El microprocesador surgió de la evolución de distintas tecnologías predecesoras, básicamente de la computación y de la tecnología de semiconductores. El inicio de esta última data de mitad de la década de 1950; estas tecnologías se fusionaron a principios de los años 1970, produciendo el primer microprocesador. Dichas tecnologías iniciaron su desarrollo a partir de la segunda guerra mundial; en este tiempo los científicos desarrollaron computadoras específicas para aplicaciones militares. En la posguerra, a mediados de la década de 1940, la computación digital emprendió un fuerte crecimiento también para propósitos científicos y civiles. La tecnología electrónica avanzó y los científicos hicieron grandes progresos en el diseño de componentes de estado sólido (semiconductores). En 1948 en los laboratorios Bell crearon el transistor. En los años 1950, aparecieron las primeras computadoras digitales de propósito general. Se fabricaron utilizando tubos al vacío o bulbos como componentes electrónicos activos. Módulos de tubos al vacío componían circuitos lógicos básicos, tales como compuertas y flip-flops. Ensamblándolos en módulos se construyó la computadora electrónica (la lógica de control, circuitos de memoria, etc.). Los tubos de vacío también formaron parte de la construcción de máquinas para la comunicación con las computadoras. Para la construcción de un circuito sumador simple se requiere de algunas compuertas lógicas. La construcción de una computadora digital precisa numerosos circuitos o dispositivos electrónicos. Un paso trascendental en el diseño de la computadora fue hacer que el dato fuera almacenado en memoria. Y la idea de almacenar programas en memoria para luego ejecutarlo fue también de fundamental importancia (Arquitectura de von Neumann). La tecnología de los circuitos de estado sólido evolucionó en la década de 1950. El empleo del silicio (Si), de bajo costo y con métodos de producción masiva, hicieron del transistor el componente más usado para el diseño de circuitos electrónicos. Por lo tanto el diseño de la computadora digital se reemplazó del tubo al vacío por el transistor, a finales de la década de 1950. A principios de la década de 1960, el estado de arte en la construcción de computadoras de estado sólido sufrió un notable avance; surgieron las tecnologías en circuitos digitales como: RTL (Lógica Transistor Resistor), DTL (Lógica Transistor Diodo), TTL (Lógica Transistor Transistor), ECL (Lógica Complementada Emisor). A mediados de los años 1960 se producen las familias de circuitos de lógica digital, dispositivos integrados en escala SSI y MSI que corresponden a baja y mediana escala de integración de componentes. A finales de los años 1960 y principios de los 70 surgieron los sistemas a alta escala de integración o LSI. La tecnología LSI fue haciendo posible incrementar la cantidad de componentes en los circuitos integrados. Sin embargo, pocos circuitos LSI fueron producidos, los dispositivos de memoria eran un buen ejemplo. Las primeras calculadoras electrónicas requerían entre 75 y 100 circuitos integrados. Después se dio un paso importante en la reducción de la arquitectura de la computadora a un circuito integrado simple, resultando uno que fue llamado microprocesador, unión de las palabras «Micro» del griego μικρο-, «pequeño», y procesador. Sin embargo, es totalmente válido usar el término genérico procesador, dado que con el paso de los años, la escala de integración se ha visto reducida de micro métrica a nanométrica; y además, es sin duda, un procesador. * El primer microprocesador fue el Intel 4004,1​ producido en 1971. Se desarrolló originalmente para una calculadora y resultó revolucionario para su época. Contenía 2300 transistores, era un microprocesador de arquitectura de 4 bits que podía realizar hasta 60000 operaciones por segundo trabajando a una frecuencia de reloj de alrededor de 700 kHz. * El primer microprocesador de 8 bits fue el Intel 8008, desarrollado a mediados de 1972 para su uso en terminales informáticos. El Intel 8008 integraba 3300 transistores y podía procesar a frecuencias máximas de 800kHz. * El primer microprocesador realmente diseñado para uso general, desarrollado en 1974, fue el Intel 8080 de 8 bits, que contenía 4500 transistores y podía ejecutar 200 000 instrucciones por segundo trabajando a alrededor de 2MHz. * El primer microprocesador de 16 bits fue el 8086, seguido del 8088. El 8086 fue el inicio y el primer miembro de la popular arquitectura x86, actualmente usada en la mayoría de los computadores. El chip 8086 fue introducido al mercado en el verano de 1978, pero debido a que no había aplicaciones en el mercado que funcionaran con 16 bits, Intel sacó al mercado el 8088, que fue lanzado en 1979. Llegaron a operar a frecuencias mayores de 4MHz. * El microprocesador elegido para equipar al IBM Personal Computer/AT, que causó que fuera el más empleado en los PC-AT compatibles entre mediados y finales de los años 1980 fue el Intel 80286 (también conocido simplemente como 286); es un microprocesador de 16 bits, de la familia x86, que fue lanzado al mercado en 1982. Contaba con 134 000 transistores. Las versiones finales alcanzaron velocidades de hasta 25MHz. * Uno de los primeros procesadores de arquitectura de 32 bits fue el 80386 de Intel, fabricado a mediados y fines de la década de 1980; en sus diferentes versiones llegó a trabajar a frecuencias del orden de los 40MHz. La generación 486 realmente significó contar con una computadora personal de prestaciones avanzadas, entre ellas, un conjunto de instrucciones optimizado, una unidad de coma flotante o FPU, una unidad de interfaz de bus mejorada y una memoria caché unificada, todo ello integrado en el propio chip del microprocesador. Estas mejoras hicieron que los i486 fueran el doble de rápidos que el par i386 - i387 operando a la misma frecuencia de reloj. El procesador Intel 486 fue el primero en ofrecer un coprocesador matemático o FPU integrado; con él que se aceleraron notablemente las operaciones de cálculo. Usando una unidad FPU las operaciones matemáticas más complejas son realizadas por el coprocesador de manera prácticamente independiente a la función del procesador principal. El microprocesador de Pentium poseía una arquitectura capaz de ejecutar dos operaciones a la vez, gracias a sus dos tuberías de datos de 32 bits cada uno, uno equivalente al 486DX(u) y el otro equivalente a 486SX(u). Además, estaba dotado de un bus de datos de 64 bits, y permitía un acceso a memoria de 64 bits (aunque el procesador seguía manteniendo compatibilidad de 32 bits para las operaciones internas, y los registros también eran de 32 bits). Las versiones que incluían instrucciones MMX no sólo brindaban al usuario un más eficiente manejo de aplicaciones multimedia, sino que también se ofrecían en velocidades de hasta 233MHz. Se incluyó una versión de 200MHz y la más básica trabajaba a alrededor de 166MHz de frecuencia de reloj. El nombre Pentium, se mencionó en las historietas y en charlas de la televisión a diario, en realidad se volvió una palabra muy popular poco después de su introducción. En este año IBM y Motorola desarrollan el primer prototipo del procesador Power PC de 64 bit,3​ la implementación más avanzada de la arquitectura Power PC, que estuvo disponible al año próximo. El 620 fue diseñado para su utilización en servidores, y especialmente optimizado para usarlo en configuraciones de cuatro y hasta ocho procesadores en servidores de aplicaciones de base de datos y vídeo. Este procesador incorpora siete millones de transistores y corre a 133MHz. Es ofrecido como un puente de migración para aquellos usuarios que quieren utilizar aplicaciones de 64 bits, sin tener que renunciar a ejecutar aplicaciones de 32 bits. Lanzado al mercado en otoño de 1995, el procesador Pentium Pro (profesional) se diseñó con una arquitectura de 32 bits. Se usó en servidores y los programas y aplicaciones para estaciones de trabajo (de redes) impulsaron rápidamente su integración en las computadoras. El rendimiento del código de 32 bits era excelente, pero el Pentium Pro a menudo era más lento que un Pentium cuando ejecutaba código o sistemas operativos de 16 bits. El procesador Pentium Pro estaba compuesto por alrededor de 5'5 millones de transistores. Habiendo abandonado los clones, AMD fabricada con tecnologías análogas a Intel. AMD sacó al mercado su primer procesador propio, el K5, rival del Pentium. La arquitectura RISC86 del AMD K5 era más semejante a la arquitectura del Intel Pentium Pro que a la del Pentium. El K5 es internamente un procesador RISC con una Unidad x86- decodificadora, transforma todos los comandos x86 (de la aplicación en curso) en comandos RISC. Este principio se usa hasta hoy en todas las CPU x86. En la mayoría de los aspectos era superior el K5 al Pentium, incluso de inferior precio, sin embargo AMD tenía poca experiencia en el desarrollo de microprocesadores y los diferentes hitos de producción marcados se fueron superando con poco éxito, se retrasó 1 año de su salida al mercado, a razón de ello sus frecuencias de trabajo eran inferiores a las de la competencia, y por tanto, los fabricantes de PC dieron por sentado que era inferior. Con el K6, AMD no sólo consiguió hacerle seriamente la competencia a los Pentium MMX de Intel, sino que además amargó lo que de otra forma hubiese sido un plácido dominio del mercado, ofreciendo un procesador casi a la altura del Pentium II pero por un precio muy inferior. En cálculos en coma flotante, el K6 también quedó por debajo del Pentium II, pero por encima del Pentium MMX y del Pro. El K6 contó con una gama que va desde los 166 hasta los más de 500MHz y con el juego de instrucciones MMX, que ya se han convertido en estándares. Más adelante se lanzó una mejora de los K6, los K6-2 de 250 nanómetros, para seguir compitiendo con los Pentium II, siendo este último superior en tareas de coma flotante, pero inferior en tareas de uso general. Se introduce un juego de instrucciones SIMD denominado 3DNow!. El Intel Pentium II es un procesador de 7'5 millones de transistores, se busca entre los cambios fundamentales con respecto a su predecesor, mejorar el rendimiento en la ejecución de código de 16 bits, añadir el conjunto de instrucciones MMX y eliminar la memoria caché de segundo nivel del núcleo del procesador, colocándola en una tarjeta de circuito impreso junto a éste. Gracias al nuevo diseño de este procesador, los usuarios de PC pueden capturar, revisar y compartir fotografías digitales con amigos y familia vía Internet; revisar y agregar texto, música y otros; con una línea telefónica; el enviar vídeo a través de las líneas normales del teléfono mediante Internet se convierte en algo cotidiano. El procesador Pentium III ofrece 70 nuevas instrucciones Internet Streaming, las extensiones de SIMD que refuerzan dramáticamente el rendimiento con imágenes avanzadas, 3D, añadiendo una mejor calidad de audio, vídeo y rendimiento en aplicaciones de reconocimiento de voz. Fue diseñado para reforzar el área del rendimiento en el Internet, le permite a los usuarios hacer cosas, tales como, navegar a través de páginas pesadas (con muchos gráficos), tiendas virtuales y transmitir archivos vídeo de alta calidad. El procesador se integra con 9,5 millones de transistores, y se introdujo usando en él tecnología 250 nanómetros. Creado en el año 2000, este microprocesador de séptima generación basado en la arquitectura x86 y fabricado por Intel, es el primero con un diseño completamente nuevo desde el Pentium Pro. Se estrenó con la arquitectura NetBurst, la cual no daba mejoras considerables respecto a la anterior P6. Intel sacrificó el rendimiento de cada ciclo para obtener a cambio mayor cantidad de ciclos por segundo y una mejora en las instrucciones SSE. El AMD Athlon XP, cuando Intel sacó el Pentium 4 a 1,7 GHz en abril de 2001 se vio que el Athlon Thunderbird no estaba a su nivel. Además no era práctico para el overclocking, entonces para seguir estando a la cabeza en cuanto a rendimiento de los procesadores x86, AMD tuvo que diseñar un nuevo núcleo, y sacó el Athlon XP. Este compatibilizaba las instrucciones SSE y las 3DNow! Entre las mejoras respecto al Thunderbird se puede mencionar la prerrecuperación de datos por hardware, conocida en inglés como prefetch, y el aumento de las entradas TLB, de 24 a 32. El AMD Athlon 64 es un microprocesador x86 de octava generación que implementa el conjunto de instrucciones AMD64, que fueron introducidas con el procesador Opteron. El Athlon 64 presenta un controlador de memoria en el propio circuito integrado del microprocesador y otras mejoras de arquitectura que le dan un mejor rendimiento que los anteriores Athlon y que el Athlon XP funcionando a la misma velocidad, incluso ejecutando código heredado de 32 bits. El Athlon 64 también presenta una tecnología de reducción de la velocidad del procesador llamada Cool'n'Quiet,: cuando el usuario está ejecutando aplicaciones que requieren poco uso del procesador, baja la velocidad del mismo y su tensión se reduce. Intel lanzó el Core Duo, esta gama de procesadores de doble núcleo y CPUs 2x2 MCM (módulo Multi-Chip) de cuatro núcleos con el conjunto de instrucciones x86-64, basado en la nueva arquitectura Core de Intel. La microarquitectura Core regresó a velocidades de CPU bajas y mejoró el uso del procesador de ambos ciclos de velocidad y energía comparados con anteriores NetBurst de los CPU Pentium 4/D2. La microarquitectura Core provee etapas de decodificación, unidades de ejecución, caché y buses más eficientes, reduciendo el consumo de energía de CPU Core 2, mientras se incrementa la capacidad de procesamiento. Los CPU de Intel han variado muy bruscamente en consumo de energía de acuerdo a velocidad de procesador, arquitectura y procesos de semiconductor, mostrado en las tablas de disipación de energía del CPU. Esta gama de procesadores fueron fabricados de 65 a 45 nanómetros. Phenom fue el nombre dado por Advanced Micro Devices (AMD) a la primera generación de procesadores de tres y cuatro núcleos basados en la microarquitectura K10. Como característica común todos los Phenom tienen tecnología de 65nm lograda a través de tecnología de fabricación Silicon on insulator (SOI). No obstante, Intel, ya se encontraba fabricando mediante la más avanzada tecnología de proceso de 45nm en 2008. Los procesadores Phenom están diseñados para facilitar el uso inteligente de energía y recursos del sistema, listos para la virtualización, generando un óptimo rendimiento por vatio. Todas las CPU Phenom poseen características tales como controlador de memoria DDR2 integrado, tecnología HyperTransport y unidades de coma flotante de 128 bits, para incrementar la velocidad y el rendimiento de los cálculos de coma flotante. La arquitectura Direct Connect asegura que los cuatro núcleos tengan un óptimo acceso al controlador integrado de memoria, logrando un ancho de banda de 16Gb/s para intercomunicación de los núcleos del microprocesador y la tecnología HyperTransport, de manera que las escalas de rendimiento mejoren con el número de núcleos. Tiene caché L3 compartida para un acceso más rápido a los datos (y así no depende tanto del tiempo de latencia de la RAM), además de compatibilidad de infraestructura de los zócalos AM2, AM2+ y AM3 para permitir un camino de actualización sin sobresaltos. A pesar de todo, no llegaron a igualar el rendimiento de la serie Core 2 Duo. Intel Core i7 es una familia de procesadores de cuatro núcleos de la arquitectura Intel x86-64. Los Core i7 son los primeros procesadores que usan la microarquitectura Nehalem de Intel y es el sucesor de la familia Intel Core 2. FSB es reemplazado por la interfaz QuickPath en i7 e i5 (zócalo 1366), y sustituido a su vez en i7, i5 e i3 (zócalo 1156) por el DMI eliminado el northBrige e implementando puertos PCI Express directamente. Memoria de tres canales (ancho de datos de 192 bits): cada canal puede soportar una o dos memorias DIMM DDR3. Las placa base compatibles con Core i7 tienen cuatro (3+1) o seis ranuras DIMM en lugar de dos o cuatro, y las DIMMs deben ser instaladas en grupos de tres, no dos. El Hyperthreading fue reimplementado creando núcleos lógicos. Está fabricado a arquitecturas de 45nm y 32nm y posee 731 millones de transistores su versión más potente. Se volvió a usar frecuencias altas, aunque a contrapartida los consumos se dispararon. AMD Phenom II es el nombre dado por AMD a una familia de microprocesadores o CPUs multinúcleo (multicore) fabricados en 45nm, la cual sucede al Phenom original y dieron soporte a DDR3. Una de las ventajas del paso de los 65nm a los 45nm, es que permitió aumentar la cantidad de caché L3. De hecho, ésta se incrementó de una manera generosa, pasando de los 2MiB del Phenom original a 6MiB. Entre ellos, el AMD Phenom II X2 BE 555 de doble núcleo surge como el procesador binúcleo del mercado. También se lanzan tres Athlon II con sólo Caché L2, pero con buena relación precio/rendimiento. El AMD Athlon II X4 630 corre a 2,8GHz. El AMD Athlon II X4 635 continua la misma línea. AMD también lanza un triple núcleo, llamado Athlon II X3 440, así como un doble núcleo Athlon II X2 255. También sale el Phenom X4 995, de cuatro núcleos, que corre a más de 3,2GHz. También AMD lanza la familia Thurban con 6 núcleos físicos dentro del encapsulado. El Intel Core Sandy Bridge Llegan para remplazar los chips Nehalem, con Intel Core i3, Intel Core i5 e Intel Core i7 serie 2000 y Pentium G. Intel lanzó sus procesadores que se conocen con el nombre en clave Sandy Bridge. Estos procesadores Intel Core que no tienen sustanciales cambios en arquitectura respecto a Nehalem, pero si los necesarios para hacerlos más eficientes y rápidos que los modelos anteriores. Es la segunda generación de los Intel Core con nuevas instrucciones de 256 bits, duplicando el rendimiento, mejorando el rendimiento en 3D y todo lo que se relacione con operación en multimedia. Llegaron la primera semana de enero del 2011. Incluye nuevo conjunto de instrucciones denominado AVX y una GPU integrada de hasta 12 unidades de ejecución. AMD Fusión es el nombre clave para un diseño futuro de microprocesadores Turion, producto de la fusión entre AMD y ATI, combinando con la ejecución general del procesador, el proceso de la geometría 3D y otras funciones de GPUs actuales. La GPU (procesador gráfico) estará integrada en el propio microprocesador. Se espera la salida progresiva de esta tecnología a lo largo del 2011; estando disponibles los primeros modelos (Ontaro y Zacate) para ordenadores de bajo consumo entre últimos meses de 2010 y primeros de 2011, dejando el legado de las gamas medias y altas (Llano, Brazos y Bulldozer para mediados o finales del 2011). Ivy Bridge es el nombre en clave de los procesadores conocidos como Intel Core de tercera generación. Son por tanto sucesores de los micros que aparecieron a principios de 2011, cuyo nombre en clave es Sandy Bridge. Pasamos de los 32 nanómetros de ancho de transistor en Sandy Bridge a los 22 de Ivy Bridge. Esto le permite meter el doble de ellos en la misma área. Un mayor número de transistores significa que puedes poner más bloques funcionales dentro del chip. Es decir, este será capaz de hacer un mayor número de tareas al mismo tiempo. Intel Core Haswell es el nombre clave de los procesadores de cuarta generación de Intel Core. Son la corrección de errores de la tercera generación e implementan nuevas tecnologías gráficas para el gamming y el diseño gráfico, funcionando con un menor consumo y teniendo un mejor rendimiento a un buen precio. Continua como su predecesor en 22nanómetros pero funciona con un nuevo Socket con clave 1150. Tienen un costo elevado a comparación con los APU's y FX de AMD pero tienen un mayor rendimiento. AMD Ryzen, es una marca de procesadores desarrollados por AMD lanzada en febrero de 2017, usa la microarquitectura Zen en proceso de fabricación de 14nm y cuentan con 4800 millones de transistores, ofrecen un gran rendimiento multi-hilo pero uno menor usando un solo hilo que los de su competencia Intel. Estos requieren del zócalo AM4 y todas las tarjetas madre para este tipo de procesadores incorporan multiplicadores desbloqueados para overclocking, además que todos los productos soportan overclocking automático, aunque esto procesadores no cuentan con GPU integrada, por lo que dependen de una solución dedicada. Los procesadores Ryzen devolvieron a AMD a la gama alta de CPUs de escritorio, capaces de competir en rendimiento contra los procesadores Core i7 de Intel con precios menores y competitivos; desde su lanzamiento la cuota de mercado de AMD ha aumentado

evolución del procesador

Usamos cookies propias y de terceros que entre otras cosas recogen datos sobre sus hábitos de navegación para mostrarle publicidad personalizada y realizar análisis de uso de nuestro sitio.
Si continúa navegando consideramos que acepta su uso. OK Más información | Y más