Copyright © 2014-2019

Onubaelectrónica.es

.

Todos los derechos Reservados. -

Información Legal

.

Arena de Silicio

Disco de Silicio

Arena de Germanio

Disipador Termico Aluminio

Conexión Flip Chip

Disipador Térmico Aluminio

El Procesador

Fabricación del Procesador (CPU)

OnubaElectrónica

Aprendes fácilmente!

Síguenos

El proceso de fabricación de un microprocesador es muy complejo. Todo comienza con un buen puñado de arena (compuesta básicamente de silicio), con la que se fabrica un mono cristal de unos 20 x 150 centímetros. Para ello, se funde el material en cuestión a alta temperatura (1.370 °C) y muy lentamente (10 a 40 mm por hora) se va formando el cristal. De este cristal, de cientos de kilos de peso, se cortan los extremos y la superficie exterior, de forma de obtener un cilindro perfecto. Luego, el cilindro se corta en obleas de 10 micras de espesor, la décima parte del espesor de un cabello humano, utilizando una sierra de diamante. De cada cilindro se obtienen miles de obleas, y de cada oblea se fabricarán varios cientos de microprocesadores. Estas obleas son pulidas hasta obtener una superficie perfectamente plana, pasan por un proceso llamado “annealing”, que consiste en someterlas a un calentamiento extremo para eliminar cualquier defecto o impureza que pueda haber llegado a esta instancia. Después de una supervisión mediante láseres capaz de detectar imperfecciones menores a una milésima de micra, se recubren con una capa aislante formada por óxido de silicio transferido mediante deposición de vapor. De aquí en adelante, comienza el proceso del «dibujado» de los transistores que conformarán a cada microprocesador. A pesar de ser muy complejo y preciso, básicamente consiste en la “impresión” de sucesivas máscaras sobre la oblea, sucediéndose la deposición y eliminación de capas finísimas de materiales conductores, aislantes y semiconductores, endurecidas mediante luz ultravioleta y atacada por ácidos encargados de eliminar las zonas no cubiertas por la impresión. Salvando las escalas, se trata de un proceso comparable al visto para la fabricación de circuitos impresos. Después de cientos de pasos, entre los que se hallan la creación de sustrato, la oxidación, la litografía, el grabado, la implantación iónica y la deposición de capas; se llega a un complejo «bocadillo» que contiene todos los circuitos interconectados del microprocesador. Un transistor construido en tecnología de 45 nanómetros tiene un ancho equivalente a unos 200 electrones. Eso da una idea de la precisión absoluta que se necesita al momento de aplicar cada una de las máscaras utilizadas durante la fabricación. Los detalles de un microprocesador son tan pequeños y precisos que una única mota de polvo puede destruir todo un grupo de circuitos. Las salas empleadas para la fabricación de microprocesadores se denominan salas limpias, porque el aire de las mismas se somete a un filtrado exhaustivo y está prácticamente libre de polvo. Las salas limpias más puras de la actualidad se denominan de clase 1. La cifra indica el número máximo de partículas mayores de 0,12 micras que puede haber en un pie cúbico (0,028 m3) de aire. Como comparación, un hogar normal sería de clase 1 millón. Los trabajadores de estas plantas emplean trajes estériles para evitar que restos de piel, polvo o pelo se desprendan de sus cuerpos. Una vez que la oblea ha pasado por todo el proceso litográfico, tiene “grabados” en su superficie varios cientos de microprocesadores, cuya integridad es comprobada antes de cortarlos. Se trata de un proceso obviamente automatizado, y que termina con una oblea que tiene grabados algunas marcas en el lugar que se encuentra algún microprocesador defectuoso. La mayoría de los errores se dan en los bordes de la oblea, dando como resultados chips capaces de funcionar a velocidades menores que los del centro de la oblea o simplemente con características desactivadas, tales como núcleos. Luego la oblea es cortada y cada chip individualizado. En esta etapa del proceso el microprocesador es una pequeña placa de unos pocos milímetros cuadrados, sin pines ni cápsula protectora. Cada una de estas plaquitas será dotada de una cápsula protectora plástica (en algunos casos pueden ser cerámicas) y conectada a los cientos de pines metálicos que le permitirán interactuar con el mundo exterior. Estas conexiones se realizan utilizando delgadísimos alambres, generalmente de oro. De ser necesario, la cápsula es provista de un pequeño disipador térmico de metal, que servirá para mejorar la transferencia de calor desde el interior del chip hacia el disipador principal. El resultado final es un microprocesador como los que equipan a los computadores. También se están desarrollando alternativas al silicio puro, tales como el carburo de silicio que mejora la conductividad del material, permitiendo mayores frecuencias de reloj interno; aunque aún se encuentra en investigación. Otros materiales. Aunque la gran mayoría de la producción de circuitos integrados se basa en el silicio, no se puede omitir la utilización de otros materiales que son una alternativa tales como el germanio; tampoco las investigaciones actuales para conseguir hacer operativo un procesador desarrollado con materiales de características especiales como el grafeno o la molibdenita. Empaquetado o Encapsulado. Los microprocesadores son circuitos integrados y como tal están formados por un chip de silicio y un empaque con conexiones eléctricas. En los primeros procesadores el empaque se fabricaba con plásticos epoxicos o con cerámicas en formatos como el DIP entre otros. El chip se pegaba con un material térmicamente conductor a una base y se conectaba por medio de pequeños alambres a unas pistas terminadas en pines. Posteriormente se sellaba todo con una placa metálica u otra pieza del mismo material de la base de manera que los alambres y el silicio quedaran encapsulados. En la actualidad los microprocesadores de diversos tipos (incluyendo procesadores gráficos) se ensamblan por medio de la tecnología Flip chip. El chip semiconductor es soldado directamente a una colección de pistas conductoras (en el sustrato laminado) con la ayuda de unas microesferas que se depositan sobre las obleas de semiconductor en las etapas finales de su fabricación. El sustrato laminado es una especie de circuito impreso que posee pistas conductoras hacia pines o contactos, que a su vez servirán de conexión entre el chip semiconductor y un zócalo de CPU o una placa base. Antiguamente las conexión del chip con los pines se realizaba por medio de microalambres de manera que quedaba boca arriba, con el método Flip Chip queda boca abajo, de ahí se deriva su nombre. Entre las ventajas de este método esta la simplicidad del ensamble y en una mejor disipación de calor. Cuando la pastilla queda bocabajo presenta el sustrato base de silicio de manera que puede ser enfriado directamente por medio de elementos conductores de calor. Esta superficie se aprovecha también para etiquetar el integrado. En los procesadores para computadores de escritorio, dada la vulnerabilidad de la pastilla de silicio, se opta por colocar una placa de metal, por ejemplo en los procesadores Athlon como el de la primera imagen. En los procesadores de Intel también se incluye desde el Pentium III de más de 1 GHz. Disipación de calor. Con el aumento de la cantidad de transistores integrados en un procesador, el consumo de energía se ha elevado a niveles en los cuales la disipación calórica natural del mismo no es suficiente para mantener temperaturas aceptables y que no se dañe el material semiconductor, de manera que se hizo necesario el uso de mecanismos de enfriamiento forzado, esto es, la utilización de disipadores de calor. Entre ellos se encuentran los sistemas sencillos, tales como disipadores metálicos, que aumentan el área de radiación, permitiendo que la energía salga rápidamente del sistema. También los hay con refrigeración líquida, por medio de circuitos cerrados. En los procesadores más modernos se aplica en la parte superior del procesador, una lámina metálica denominada IHS que va a ser la superficie de contacto del disipador para mejorar la refrigeración uniforme del die y proteger las resistencias internas de posibles tomas de contacto al aplicar pasta térmica. Varios modelos de procesadores, en especial, los Athlon XP, han sufrido cortocircuitos debido a una incorrecta aplicación de la pasta térmica. Para las prácticas de overclock extremo, se llegan a utilizar elementos químicos tales como hielo seco, y en casos más extremos, nitrógeno líquido, capaces de rondar temperaturas por debajo de los -190 grados Celsius y el helio líquido capaz de rondar temperaturas muy próximas al cero absoluto. De esta manera se puede prácticamente hasta triplicar la frecuencia de reloj de referencia de un procesador de silicio. El límite físico del silicio es de 10 GHz, mientras que el de otros materiales como el grafeno puede llegar a 1THz. Conexión con el exterior. El microprocesador posee un arreglo de elementos metálicos que permiten la conexión eléctrica entre el circuito integrado que conforma el microprocesador y los circuitos de la placa base. Dependiendo de la complejidad y de la potencia, un procesador puede tener desde 8 hasta más de 2000 elementos metálicos en la superficie de su empaque. El montaje del procesador se realiza con la ayuda de un zócalo de CPU soldado sobre la placa base. Generalmente distinguimos tres tipos de conexión: PGA: Pin Grid Array: La conexión se realiza mediante pequeños alambres metálicos repartidos a lo largo de la base del procesador introduciéndose en la placa base mediante unos pequeños agujeros, al introducir el procesador, una palanca anclará los pines para que haga buen contacto y no se suelten. BGA: Ball Grid Array: La conexión se realiza mediante bolas soldadas al procesador que hacen contacto con el zócalo LGA: Land Grid Array: La conexión se realiza mediante superficies de contacto lisas con pequeños pines que incluye la placa base. Entre las conexiones eléctricas están las de alimentación eléctrica de los circuitos dentro del empaque, las señales de reloj, señales relacionadas con datos, direcciones y control; estas funciones están distribuidas en un esquema asociado al zócalo, de manera que varias referencias de procesador y placas base son compatibles entre ellos, permitiendo distintas configuraciones.

Oblea de Silicio

Invitado
Hola

Copyright © 2014-2019 Onubaelectrónica.es.

Arena de Silicio

Disco de Silicio

Arena de Germanio

Disipador Termico Aluminio

Conexión Flip Chip

Fabricación

del

Procesador (CPU)

OnubaElectrónica

Aprendes fácilmente!

El proceso de fabricación de un microprocesador es muy complejo. Todo comienza con un buen puñado de arena (compuesta básicamente de silicio), con la que se fabrica un mono cristal de unos 20 x 150 centímetros. Para ello, se funde el material en cuestión a alta temperatura (1.370 °C) y muy lentamente (10 a 40 mm por hora) se va formando el cristal. De este cristal, de cientos de kilos de peso, se cortan los extremos y la superficie exterior, de forma de obtener un cilindro perfecto. Luego, el cilindro se corta en obleas de 10 micras de espesor, la décima parte del espesor de un cabello humano, utilizando una sierra de diamante. De cada cilindro se obtienen miles de obleas, y de cada oblea se fabricarán varios cientos de microprocesadores. Estas obleas son pulidas hasta obtener una superficie perfectamente plana, pasan por un proceso llamado “annealing”, que consiste en someterlas a un calentamiento extremo para eliminar cualquier defecto o impureza que pueda haber llegado a esta instancia. Después de una supervisión mediante láseres capaz de detectar imperfecciones menores a una milésima de micra, se recubren con una capa aislante formada por óxido de silicio transferido mediante deposición de vapor. De aquí en adelante, comienza el proceso del «dibujado» de los transistores que conformarán a cada microprocesador. A pesar de ser muy complejo y preciso, básicamente consiste en la “impresión” de sucesivas máscaras sobre la oblea, sucediéndose la deposición y eliminación de capas finísimas de materiales conductores, aislantes y semiconductores, endurecidas mediante luz ultravioleta y atacada por ácidos encargados de eliminar las zonas no cubiertas por la impresión. Salvando las escalas, se trata de un proceso comparable al visto para la fabricación de circuitos impresos. Después de cientos de pasos, entre los que se hallan la creación de sustrato, la oxidación, la litografía, el grabado, la implantación iónica y la deposición de capas; se llega a un complejo «bocadillo» que contiene todos los circuitos interconectados del microprocesador. Un transistor construido en tecnología de 45 nanómetros tiene un ancho equivalente a unos 200 electrones. Eso da una idea de la precisión absoluta que se necesita al momento de aplicar cada una de las máscaras utilizadas durante la fabricación. Los detalles de un microprocesador son tan pequeños y precisos que una única mota de polvo puede destruir todo un grupo de circuitos. Las salas empleadas para la fabricación de microprocesadores se denominan salas limpias, porque el aire de las mismas se somete a un filtrado exhaustivo y está prácticamente libre de polvo. Las salas limpias más puras de la actualidad se denominan de clase 1. La cifra indica el número máximo de partículas mayores de 0,12 micras que puede haber en un pie cúbico (0,028 m3) de aire. Como comparación, un hogar normal sería de clase 1 millón. Los trabajadores de estas plantas emplean trajes estériles para evitar que restos de piel, polvo o pelo se desprendan de sus cuerpos. Una vez que la oblea ha pasado por todo el proceso litográfico, tiene “grabados” en su superficie varios cientos de microprocesadores, cuya integridad es comprobada antes de cortarlos. Se trata de un proceso obviamente automatizado, y que termina con una oblea que tiene grabados algunas marcas en el lugar que se encuentra algún microprocesador defectuoso. La mayoría de los errores se dan en los bordes de la oblea, dando como resultados chips capaces de funcionar a velocidades menores que los del centro de la oblea o simplemente con características desactivadas, tales como núcleos. Luego la oblea es cortada y cada chip individualizado. En esta etapa del proceso el microprocesador es una pequeña placa de unos pocos milímetros cuadrados, sin pines ni cápsula protectora. Cada una de estas plaquitas será dotada de una cápsula protectora plástica (en algunos casos pueden ser cerámicas) y conectada a los cientos de pines metálicos que le permitirán interactuar con el mundo exterior. Estas conexiones se realizan utilizando delgadísimos alambres, generalmente de oro. De ser necesario, la cápsula es provista de un pequeño disipador térmico de metal, que servirá para mejorar la transferencia de calor desde el interior del chip hacia el disipador principal. El resultado final es un microprocesador como los que equipan a los computadores. También se están desarrollando alternativas al silicio puro, tales como el carburo de silicio que mejora la conductividad del material, permitiendo mayores frecuencias de reloj interno; aunque aún se encuentra en investigación. Otros materiales. Aunque la gran mayoría de la producción de circuitos integrados se basa en el silicio, no se puede omitir la utilización de otros materiales que son una alternativa tales como el germanio; tampoco las investigaciones actuales para conseguir hacer operativo un procesador desarrollado con materiales de características especiales como el grafeno o la molibdenita. Empaquetado o Encapsulado. Los microprocesadores son circuitos integrados y como tal están formados por un chip de silicio y un empaque con conexiones eléctricas. En los primeros procesadores el empaque se fabricaba con plásticos epoxicos o con cerámicas en formatos como el DIP entre otros. El chip se pegaba con un material térmicamente conductor a una base y se conectaba por medio de pequeños alambres a unas pistas terminadas en pines. Posteriormente se sellaba todo con una placa metálica u otra pieza del mismo material de la base de manera que los alambres y el silicio quedaran encapsulados. En la actualidad los microprocesadores de diversos tipos (incluyendo procesadores gráficos) se ensamblan por medio de la tecnología Flip chip. El chip semiconductor es soldado directamente a una colección de pistas conductoras (en el sustrato laminado) con la ayuda de unas microesferas que se depositan sobre las obleas de semiconductor en las etapas finales de su fabricación. El sustrato laminado es una especie de circuito impreso que posee pistas conductoras hacia pines o contactos, que a su vez servirán de conexión entre el chip semiconductor y un zócalo de CPU o una placa base. Antiguamente las conexión del chip con los pines se realizaba por medio de microalambres de manera que quedaba boca arriba, con el método Flip Chip queda boca abajo, de ahí se deriva su nombre. Entre las ventajas de este método esta la simplicidad del ensamble y en una mejor disipación de calor. Cuando la pastilla queda bocabajo presenta el sustrato base de silicio de manera que puede ser enfriado directamente por medio de elementos conductores de calor. Esta superficie se aprovecha también para etiquetar el integrado. En los procesadores para computadores de escritorio, dada la vulnerabilidad de la pastilla de silicio, se opta por colocar una placa de metal, por ejemplo en los procesadores Athlon como el de la primera imagen. En los procesadores de Intel también se incluye desde el Pentium III de más de 1 GHz. Disipación de calor. Con el aumento de la cantidad de transistores integrados en un procesador, el consumo de energía se ha elevado a niveles en los cuales la disipación calórica natural del mismo no es suficiente para mantener temperaturas aceptables y que no se dañe el material semiconductor, de manera que se hizo necesario el uso de mecanismos de enfriamiento forzado, esto es, la utilización de disipadores de calor. Entre ellos se encuentran los sistemas sencillos, tales como disipadores metálicos, que aumentan el área de radiación, permitiendo que la energía salga rápidamente del sistema. También los hay con refrigeración líquida, por medio de circuitos cerrados. En los procesadores más modernos se aplica en la parte superior del procesador, una lámina metálica denominada IHS que va a ser la superficie de contacto del disipador para mejorar la refrigeración uniforme del die y proteger las resistencias internas de posibles tomas de contacto al aplicar pasta térmica. Varios modelos de procesadores, en especial, los Athlon XP, han sufrido cortocircuitos debido a una incorrecta aplicación de la pasta térmica. Para las prácticas de overclock extremo, se llegan a utilizar elementos químicos tales como hielo seco, y en casos más extremos, nitrógeno líquido, capaces de rondar temperaturas por debajo de los -190 grados Celsius y el helio líquido capaz de rondar temperaturas muy próximas al cero absoluto. De esta manera se puede prácticamente hasta triplicar la frecuencia de reloj de referencia de un procesador de silicio. El límite físico del silicio es de 10 GHz, mientras que el de otros materiales como el grafeno puede llegar a 1THz. Conexión con el exterior. El microprocesador posee un arreglo de elementos metálicos que permiten la conexión eléctrica entre el circuito integrado que conforma el microprocesador y los circuitos de la placa base. Dependiendo de la complejidad y de la potencia, un procesador puede tener desde 8 hasta más de 2000 elementos metálicos en la superficie de su empaque. El montaje del procesador se realiza con la ayuda de un zócalo de CPU soldado sobre la placa base. Generalmente distinguimos tres tipos de conexión: PGA: Pin Grid Array: La conexión se realiza mediante pequeños alambres metálicos repartidos a lo largo de la base del procesador introduciéndose en la placa base mediante unos pequeños agujeros, al introducir el procesador, una palanca anclará los pines para que haga buen contacto y no se suelten. BGA: Ball Grid Array: La conexión se realiza mediante bolas soldadas al procesador que hacen contacto con el zócalo LGA: Land Grid Array: La conexión se realiza mediante superficies de contacto lisas con pequeños pines que incluye la placa base. Entre las conexiones eléctricas están las de alimentación eléctrica de los circuitos dentro del empaque, las señales de reloj, señales relacionadas con datos, direcciones y control; estas funciones están distribuidas en un esquema asociado al zócalo, de manera que varias referencias de procesador y placas base son compatibles entre ellos, permitiendo distintas configuraciones.

Oblea de Silicio

Todos los derechos Reservados. - Información Legal.

OnubaElectrónica

Aprendes fácilmente!

Copyright © 2014-2019 Onubaelectrónica.es.

Todos los derechos Reservados. - Información Legal.

Arena de Silicio

Disco de Silicio

Arena de Germanio

Conexión Flip Chip

Disipador Térmico Aluminio

Fabricación

del

Procesador (CPU)

El proceso de fabricación de un microprocesador es muy complejo. Todo comienza con un buen puñado de arena (compuesta básicamente de silicio), con la que se fabrica un mono cristal de unos 20 x 150 centímetros. Para ello, se funde el material en cuestión a alta temperatura (1.370 °C) y muy lentamente (10 a 40 mm por hora) se va formando el cristal. De este cristal, de cientos de kilos de peso, se cortan los extremos y la superficie exterior, de forma de obtener un cilindro perfecto. Luego, el cilindro se corta en obleas de 10 micras de espesor, la décima parte del espesor de un cabello humano, utilizando una sierra de diamante. De cada cilindro se obtienen miles de obleas, y de cada oblea se fabricarán varios cientos de microprocesadores. Estas obleas son pulidas hasta obtener una superficie perfectamente plana, pasan por un proceso llamado “annealing”, que consiste en someterlas a un calentamiento extremo para eliminar cualquier defecto o impureza que pueda haber llegado a esta instancia. Después de una supervisión mediante láseres capaz de detectar imperfecciones menores a una milésima de micra, se recubren con una capa aislante formada por óxido de silicio transferido mediante deposición de vapor. De aquí en adelante, comienza el proceso del «dibujado» de los transistores que conformarán a cada microprocesador. A pesar de ser muy complejo y preciso, básicamente consiste en la “impresión” de sucesivas máscaras sobre la oblea, sucediéndose la deposición y eliminación de capas finísimas de materiales conductores, aislantes y semiconductores, endurecidas mediante luz ultravioleta y atacada por ácidos encargados de eliminar las zonas no cubiertas por la impresión. Salvando las escalas, se trata de un proceso comparable al visto para la fabricación de circuitos impresos. Después de cientos de pasos, entre los que se hallan la creación de sustrato, la oxidación, la litografía, el grabado, la implantación iónica y la deposición de capas; se llega a un complejo «bocadillo» que contiene todos los circuitos interconectados del microprocesador. Un transistor construido en tecnología de 45 nanómetros tiene un ancho equivalente a unos 200 electrones. Eso da una idea de la precisión absoluta que se necesita al momento de aplicar cada una de las máscaras utilizadas durante la fabricación. Los detalles de un microprocesador son tan pequeños y precisos que una única mota de polvo puede destruir todo un grupo de circuitos. Las salas empleadas para la fabricación de microprocesadores se denominan salas limpias, porque el aire de las mismas se somete a un filtrado exhaustivo y está prácticamente libre de polvo. Las salas limpias más puras de la actualidad se denominan de clase 1. La cifra indica el número máximo de partículas mayores de 0,12 micras que puede haber en un pie cúbico (0,028 m3) de aire. Como comparación, un hogar normal sería de clase 1 millón. Los trabajadores de estas plantas emplean trajes estériles para evitar que restos de piel, polvo o pelo se desprendan de sus cuerpos. Una vez que la oblea ha pasado por todo el proceso litográfico, tiene “grabados” en su superficie varios cientos de microprocesadores, cuya integridad es comprobada antes de cortarlos. Se trata de un proceso obviamente automatizado, y que termina con una oblea que tiene grabados algunas marcas en el lugar que se encuentra algún microprocesador defectuoso. La mayoría de los errores se dan en los bordes de la oblea, dando como resultados chips capaces de funcionar a velocidades menores que los del centro de la oblea o simplemente con características desactivadas, tales como núcleos. Luego la oblea es cortada y cada chip individualizado. En esta etapa del proceso el microprocesador es una pequeña placa de unos pocos milímetros cuadrados, sin pines ni cápsula protectora. Cada una de estas plaquitas será dotada de una cápsula protectora plástica (en algunos casos pueden ser cerámicas) y conectada a los cientos de pines metálicos que le permitirán interactuar con el mundo exterior. Estas conexiones se realizan utilizando delgadísimos alambres, generalmente de oro. De ser necesario, la cápsula es provista de un pequeño disipador térmico de metal, que servirá para mejorar la transferencia de calor desde el interior del chip hacia el disipador principal. El resultado final es un microprocesador como los que equipan a los computadores. También se están desarrollando alternativas al silicio puro, tales como el carburo de silicio que mejora la conductividad del material, permitiendo mayores frecuencias de reloj interno; aunque aún se encuentra en investigación. Otros materiales. Aunque la gran mayoría de la producción de circuitos integrados se basa en el silicio, no se puede omitir la utilización de otros materiales que son una alternativa tales como el germanio; tampoco las investigaciones actuales para conseguir hacer operativo un procesador desarrollado con materiales de características especiales como el grafeno o la molibdenita. Empaquetado o Encapsulado. Los microprocesadores son circuitos integrados y como tal están formados por un chip de silicio y un empaque con conexiones eléctricas. En los primeros procesadores el empaque se fabricaba con plásticos epoxicos o con cerámicas en formatos como el DIP entre otros. El chip se pegaba con un material térmicamente conductor a una base y se conectaba por medio de pequeños alambres a unas pistas terminadas en pines. Posteriormente se sellaba todo con una placa metálica u otra pieza del mismo material de la base de manera que los alambres y el silicio quedaran encapsulados. En la actualidad los microprocesadores de diversos tipos (incluyendo procesadores gráficos) se ensamblan por medio de la tecnología Flip chip. El chip semiconductor es soldado directamente a una colección de pistas conductoras (en el sustrato laminado) con la ayuda de unas microesferas que se depositan sobre las obleas de semiconductor en las etapas finales de su fabricación. El sustrato laminado es una especie de circuito impreso que posee pistas conductoras hacia pines o contactos, que a su vez servirán de conexión entre el chip semiconductor y un zócalo de CPU o una placa base. Antiguamente las conexión del chip con los pines se realizaba por medio de microalambres de manera que quedaba boca arriba, con el método Flip Chip queda boca abajo, de ahí se deriva su nombre. Entre las ventajas de este método esta la simplicidad del ensamble y en una mejor disipación de calor. Cuando la pastilla queda bocabajo presenta el sustrato base de silicio de manera que puede ser enfriado directamente por medio de elementos conductores de calor. Esta superficie se aprovecha también para etiquetar el integrado. En los procesadores para computadores de escritorio, dada la vulnerabilidad de la pastilla de silicio, se opta por colocar una placa de metal, por ejemplo en los procesadores Athlon como el de la primera imagen. En los procesadores de Intel también se incluye desde el Pentium III de más de 1 GHz. Disipación de calor. Con el aumento de la cantidad de transistores integrados en un procesador, el consumo de energía se ha elevado a niveles en los cuales la disipación calórica natural del mismo no es suficiente para mantener temperaturas aceptables y que no se dañe el material semiconductor, de manera que se hizo necesario el uso de mecanismos de enfriamiento forzado, esto es, la utilización de disipadores de calor. Entre ellos se encuentran los sistemas sencillos, tales como disipadores metálicos, que aumentan el área de radiación, permitiendo que la energía salga rápidamente del sistema. También los hay con refrigeración líquida, por medio de circuitos cerrados. En los procesadores más modernos se aplica en la parte superior del procesador, una lámina metálica denominada IHS que va a ser la superficie de contacto del disipador para mejorar la refrigeración uniforme del die y proteger las resistencias internas de posibles tomas de contacto al aplicar pasta térmica. Varios modelos de procesadores, en especial, los Athlon XP, han sufrido cortocircuitos debido a una incorrecta aplicación de la pasta térmica. Para las prácticas de overclock extremo, se llegan a utilizar elementos químicos tales como hielo seco, y en casos más extremos, nitrógeno líquido, capaces de rondar temperaturas por debajo de los -190 grados Celsius y el helio líquido capaz de rondar temperaturas muy próximas al cero absoluto. De esta manera se puede prácticamente hasta triplicar la frecuencia de reloj de referencia de un procesador de silicio. El límite físico del silicio es de 10 GHz, mientras que el de otros materiales como el grafeno puede llegar a 1THz. Conexión con el exterior. El microprocesador posee un arreglo de elementos metálicos que permiten la conexión eléctrica entre el circuito integrado que conforma el microprocesador y los circuitos de la placa base. Dependiendo de la complejidad y de la potencia, un procesador puede tener desde 8 hasta más de 2000 elementos metálicos en la superficie de su empaque. El montaje del procesador se realiza con la ayuda de un zócalo de CPU soldado sobre la placa base. Generalmente distinguimos tres tipos de conexión: PGA: Pin Grid Array: La conexión se realiza mediante pequeños alambres metálicos repartidos a lo largo de la base del procesador introduciéndose en la placa base mediante unos pequeños agujeros, al introducir el procesador, una palanca anclará los pines para que haga buen contacto y no se suelten. BGA: Ball Grid Array: La conexión se realiza mediante bolas soldadas al procesador que hacen contacto con el zócalo LGA: Land Grid Array: La conexión se realiza mediante superficies de contacto lisas con pequeños pines que incluye la placa base. Entre las conexiones eléctricas están las de alimentación eléctrica de los circuitos dentro del empaque, las señales de reloj, señales relacionadas con datos, direcciones y control; estas funciones están distribuidas en un esquema asociado al zócalo, de manera que varias referencias de procesador y placas base son compatibles entre ellos, permitiendo distintas configuraciones.

Oblea de Silicio

Usamos cookies propias y de terceros que entre otras cosas recogen datos sobre sus hábitos de navegación para mostrarle publicidad personalizada y realizar análisis de uso de nuestro sitio.
Si continúa navegando consideramos que acepta su uso. OK Más información | Y más